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Pre-Training Method: A New Paradigm

Pre-trained Model

Unlabeled speech and text data

Self-supervised loss

Label data of downstream task

Supervised loss

Pre-training Fine-tuning

Pre-trained Model

or or
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Why Pre-Trained Models?

• Pre-trained models capture task-agnostic general knowledge from 

massive labeled and unlabeled data.

• Pre-trained models transfer learned knowledge to downstream tasks, 

and support almost all NLP/Speech tasks.

• Pre-trained models provide a scalable solution to various applications, 

which require less training and require less effort.
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Text Pre-Training

• GPT-1/2/3

• BERT

GPT BERT
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Text Pre-Training

https://github.com/thunlp/PLMpapers 7



Speech Pre-Training

• Speech is unique and different from text
• Speech inputs are much longer than text, e.g., 1s has 16000 frames for 

16K HZ audio.

• Speech inputs are continuous without a predefined dictionary (like the 

vocabulary of text data).

• Speech inputs vary in the sentence length without segment boundaries.

• Speech inputs contain more information than text, e.g., content and 

speaker information.

Speech is different from text.
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Speech Pre-Training

• wav2vec 2.0

• HuBERT

wav2vec 2.0 HuBERT

+

-
-
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Speech Pre-Training

• Contrastive methods (e.g., CPC, wav2vec 2.0)

• Predictive methods (e.g., HuBERT, WavLM)

• Generative methods (e.g., APC, Audio-MAE)

(Mohamed et al., 2022)
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The Big Convergence

• Model architecture
• Transformers becomes the de facto backbone networks across AI areas 

like NLP, CV, and Speech.

• Training paradigm
• Mainstream: pre-training then fine-tuning

• Others: prompt learning

• Pre-training tasks
• Self-supervised pre-training tasks converge across different modalities

• Generative learning: language to vision and audio

• Contrastive learning: vision to language and audio
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The Big Convergence

BEiT-3: Image as a Foreign Language: BEiT
Pretraining for All Vision and Vision-Language Tasks

Github: https://github.com/microsoft/torchscale

TORCHSCALE: Transformers at Scale
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Motivation of Our Work

• The convergence is a big trend across different modalities, e.g., text, 

speech, image, and video.

• Speech and text are two important carriers of human communication. 

They are two similar modalities with natural alignment relationship.

• Push the convergence of speech and text.

reading

listening

seeing

…

Our Focus
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Background: Spoken Language Processing

• Speech/Text → Speech/Text

(Lee et al., 2020)
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• How to pre-train a model for all spoken language tasks?

• Convert all spoken language tasks as a speech/text to speech/text problem

• Pre-train a single encoder-decoder model with unlabeled speech and text data

SpeechT5: Motivation

T5 (Raffel et al., 2019) Our SpeechT5
16



SpeechT5: Model Structure

Speech/Text
Encoder

Speech/Text 
Decoder

Text-encoder 
Pre-net

Inputs:

Speech-encoder
Pre-net

Text-decoder 
Pre-net

Speech-decoder
Pre-net

Text-decoder 
Post-net

Speech-decoder
Post-net

Outputs:
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Pre-Train with Unlabeled Speech

Speech-encoder Pre-net

Transformer Encoder

𝑦1 M M M 𝑦5 𝑦6

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

Supervised loss w/ cluster label
(K-means on MFCC)

Speech-decoder Pre-net

Transformer Decoder

𝑥1

Feature Extraction

𝑥2 𝑥3 𝑥12……

𝑥1
𝑥2

Speech-decoder Post-net

𝑥3
𝑥4

𝑥5
𝑥6

𝑥7
𝑥8

𝑥9
𝑥10

𝑥11
𝑥12
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Pre-Train with Unlabeled Text

Text-encoder Pre-net

Transformer Encoder

Text-decoder Pre-net

Transformer Decoder

<B>

𝑥1 𝑥2 𝑥3 𝑥6

Text-decoder Post-net

<E>

𝑥4 𝑥5

𝑥1 𝑥6𝑥4<M1> <M2> <M3> 𝑥1 𝑥5𝑥3

𝑥1 𝑥5𝑥3

𝑥2 𝑥4 𝑥6

𝑥2 𝑥6𝑥4
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Joint Pre-Train with Speech and Text

Speech/Text
Transformer Encoder

Speech/Text 
Transformer Decoder

Text-encoder 
Pre-net

Inputs:

Speech-encoder
Pre-net

Text-decoder 
Pre-net

Speech-decoder
Pre-net

Text-decoder 
Post-net

Speech-decoder
Post-net

Outputs:

Shared Codebook

Vector Quantization

Mixed
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Speech/Text
Transformer Encoder

Text-encoder 
Pre-net

Speech-encoder
Pre-net

Quantizer

mix up
Speech

Text

Cross-modality 
quantized latent 
speech/text 
representations

• Step 1: vector quantization

• Step 2: randomly mix up

s𝑖

𝑐𝑖

s𝑖
mix

Joint Pre-Train with Speech and Text
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SpeechT5: Fine-Tune

Transformer
Encoder

Transformer
Decoder

Inputs

Outputs

• Fine-tuning tasks

• Speech conversion (speech to speech)

• Automatic speech recognition (speech to text)

• Speech synthesis (text to speech)

• Speech Identification (Speech to class)

• ……

Encoder Pre-net Decoder Pre-net

Decoder Pre-net
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SpeechT5: Evaluation
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• Verify the effectiveness of different pre-training losses

• Speech, text, and joint pre-training methods are important to SpeechT5.

• Speech pre-training is more critical than text pre-training on these tasks that 

need to encode speech.

SpeechT5: Ablation Study
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hidden units 

Speech Unit Text

Unit TextText

WER: 6.85

WER: 5.11

SpeechUT: Motivation
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SpeechUT: Model Architecture
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SpeechUT: Pre-Training Tasks
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SpeechUT: Data Acquisition

• Speech-unit data (S2U generator)
• Unsupervised clustering model: e.g., HuBERT

• Unit-text data (T2U generator)
• A sequence-to-sequence model

• R(educed)-Units: 17 17 17 17 296 296 20 20 20 34 34,… → 17 296 20 34,…

• Unit data
• Combination Speech Text

R-Units Letters

T2U 
generator

S2U & reduce Normalize

Train

Unpaired 
Text

R-Units

Small paired

Training and inference of the T2U generator
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SpeechUT: Embedding Mixing

• Embedding mixing mechanism

• Mix the embeddings of two modalities

ℛ is the selected positions for mixing, 

ℳ is the masked positions,

ℛ −ℳ is for preventing information leakage

• Perform in S2U pre-training task

• SpeechUT can employ the mechanism on all unlabeled data
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SpeechUT: ASR Evaluation

Encoder-based

Encoder-Decoder
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SpeechUT: ST Evaluation

❑ Our SpeechUT achieves the performance of 30.1, 33.6, and 41.4 BLEU scores on En-De, 

En-Es, and En-Fr, respectively, demonstrating the superiority of SpeechUT over previous 

work.
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Are the Speech and Unit Aligned?

Total Vowels Consonants Silence

85.4% 79.6% 85.5% 96.7%

(Proportion where the paired speech and unit 
representations agree to the same phonemes. )

Visualization analysis Quantitative analysis

Linear phoneme classifier

SpeechUT encoder (fixed)

Speech Unit (from text)

Same or not
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SpeechLM: Motivation

• How to boost speech pre-training with textual data is an unsolved problem.

• Almost all previous work follows the same structure with a speech/text encoder and 

a shared encoder, however, 

o the interface between the speech encoder and the text encoder is not well studied

o probably leads to the outputs of the two encoders in different spaces

o suffers from transfer interference and capacity dilution for the shared encoder

Interface?

Model

Model
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SpeechLM: Tokenizer

Phoneme-unit tokenizerHidden-unit tokenizer

• Convert speech/text into the same space
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SpeechLM: Framework

Speech pre-training

Text pre-training

• Equip with discrete tokenizers
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SpeechLM: Pre-Training Tasks

38



SpeechLM: ASR Evaluation
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SpeechLM: ST Evaluation

❑ SpeechLM-H and SpeechLM-P achieve comparable results in the Base setting, and 2.4 

BLEU improvement over HuBERT Base. 

❑Moreover, the proposed SpeechLM Large model significantly outperforms previous work.

40



SpeechLM: SUPERB Evaluation

❑ Compared to the previous self-supervised learning methods, SpeechLM achieves better 

performance on several content-related and semantic-related tasks, such as PR, ASR, ST, and SF.
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SpeechLM: Visualization Analysis

Figure: Layer-wise visualization of the Shared Transformer in SpeechLM-P Base. Frame-wise 

representations of unpaired speech (blue) and phonemes (red) are present. 
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VATLM: Motivation

• Previous multi-modal (visual, speech, text) pre-training approaches mainly focus 

on visual-language tasks and cannot be extended to other spoken language 

processing tasks, such as AVSR.

• Previous speech representation learning methods can not make full use of diverse 

corpora, e.g., visual-audio pairs, audio-text pairs, and unlabeled speech and text, 

without considering both the visual and textual information.

• Previous methods mostly depend on a complicated model architecture and pre-

training objects, lacking a unified multi-modal framework for different 

modalities modeled in the same semantic space.

(Shi et al., 2022) 44



VATLM: Framework

• One shared model, one shared pre-training loss
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VATLM: Multipath Transformer

• Preprocessing modules for visual, audio, and text

• Visual encoder (ResNet)

• Audio encoder (linear layer)

• Text encoder (embedding layer)

• Visual-audio-text fusion module 

• Transformer encoder

46



VATLM: Unified Tokenizer

• The unified tokenizer generates the shared hidden units from different 

modalities and data resources.
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VATLM: Masked Prediction Loss

• Existing multi-modal pre-training work usually employs multiple pre-training 

objectives, such as masked language modeling, contrastive learning, speech-text 

matching, image-text matching, and so on.

• We pre-train VATLM via a unified masked prediction objective on both 

mono-modal (i.e., audio and texts) and multi-modal data (i.e., audio-visual pairs 

and audio-text pairs).
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VATLM: AVSR/VSR Evaluation
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VATLM: Visualization Analysis

Figure:  The 2D t-SNE visualization of representations obtained from data with different modalities, 

where ‘av’ in the figure denotes data of audio-visual modality, ‘a’ denotes data of audio modality, ‘v’ 

denotes data of visual modality, and ‘p’ denotes data of text modality.
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Summary

SpeechT5 SpeechUT SpeechLM VATLM

Model 
architecture

Encoder-
decoder

Encoder-
decoder

Encoder Encoder

Data sources Speech/text Speech/text Speech/text
Speech/text/

visual

Need small 
paired data 

No Yes Yes Yes

Pre-training 
tasks

MLM/L1/MLE MLM/CE MLM/CTC MLM

Fine-tuning 
tasks

Universal ASR/ST Universal VSR/AVSR

• Comparison among different models
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Summary

• The big convergence across modalities (e.g., speech, text, and, image, 

and video) is emerging in recent years.

• We explored the unified-modal self-supervised representation learning, 

mainly for speech processing tasks, and proposed SpeechT5, SpeechUT, 

SpeechLM, and VATLM models. 

• All code and models are available at:

https://github.com/microsoft/SpeechT5

https://github.com/microsoft/unilm
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Challenges

• Joint speech and text modeling
• Remove the need of small paired data

• Deeply integrate the language model ability

• Extend to natural language tasks

• Speech/audio generation
• Text controllable speech/audio generation

• Cross-lingual speech synthesis

• Speech to speech translation with voice reservation

• Big convergence across modalities
• Large-scale model training with more data

• Integrate diverse video and audio data

• Build universal large language model
55
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